
 

1 

 

Workplace stress in real time: Three parsimonious scales for the 

experience sampling measurement of stressors and strain at work 

Luca Menghini1, Massimiliano Pastore2, Cristian Balducci1 

1. Department of Psychology, University of Bologna, Italy 

2. Department of Developmental and Social Psychology, University of Padua, Italy 

SUPPLEMENTARY MATERIAL S1: A priori power analysis results 

The supplemental material S1 includes a brief description of the procedure used to 

establish a ‘reasonable’ sample size to evaluate the factor structure of the proposed set of ESM 

scales, and the obtained results (more details and the R code are reported in the Supplemental 

Material S2). To be brief, here we focus on the Multidimensional Mood Questionnaire (MDMQ) 

(Wilhelm & Schoebi, 2007), implying the most complex measurement model among those 

considered in our study (i.e., nine items measuring three dimensions vs. three/four items 

measuring one dimension for the Task Demand Scale and the Task Control Scale). 

Power analysis was implemented using R (Version 4.0.3; R Core Team, 2018) and the R-

packages ggplot2 (Version 3.3.3; Wickham, 2016), gridExtra (Version 2.3; Auguie & Antonov, 

2017), lavaan (Version 0.6.7; Rosseel, 2012), MASS (Version 7.3.53; Venables & Ripley, 2002), 

reshape2 (Version 1.4.4; Hadley Wickham, 2007), and stringr (Version 1.4.0; Hadley Wickham, 

2017). 

 

1. Procedure 

The Monte Carlo approach was used to randomly simulate 10,000 samples for each of 

44 combinations of sample sizes at level 2 (i.e., participants; possible N2s = 50, 100, 150, 200, 

250, 300, 350, 400, 500, 800, 1000) and level 1 (i.e., occasions per participant; possible N1s = 

5, 10, 15, 21), and standardized loadings on both levels (possible values = .40, .60, .80). In each 
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simulation, a sample of mood item scores was generated by aggregating a level-2 dataset (with 

N2 rows) with N2 level-1 datasets (with N1 rows). Each sample was generated from the same 

between-participants and within-participant covariance matrices, both defined with the 

following model written in R code: 

 

Where LOAD is the pre-set loading value (i.e., .40, .60, .80; using the same value for all 

items), x1 … x9 are the scores to the nine items of the MDMQ (observed variables), and the =~ 

and ~~ symbols stand for “is manifested by” and “correlates with”, respectively. Correlations 

between latent factors were set based on those reported by Wilhelm & Schoebi (2007) at the 

between level. Only in the case of the correlation between Negative Valence and Tense Arousal, 

we used the parameter reported at the within level, since the authors were unable to 

distinguish the two dimensions at level 2 (the reported correlation was .99), whereas we 

hypothesized a three-factor model at both levels for our version of the MDMQ. 

Then, the following R code was used to fit a multilevel model on each simulated sample, 

and parameter estimates were stored into a dataset of parameters: 
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Parameters were stored considering only models that reached convergence with no 

Heywood cases. Then, parameter estimates were used to visualize power variation over sample 

sizes and loading values assumed for the population (see below). 

 

2. Simulation diagnostics and goodness of fit results 

For each of the 1,320,000 simulated samples, we fitted the hypothesized three-factor 

MCFA configural model, with the same three mood dimensions at both levels, but unequal 

factor loadings across levels (m3x3, see main article). As shown in Figure S1B and S1C, our 

simulations showed satisfactory convergence rates, and satisfactorily low rates of negative 

variance estimates, with fit indices confirming the goodness of the simulation procedure. 

Samples generated from a population with factor loadings = .40, and N2 < 100 were associated 

with higher rates of nonconvergence and improper solutions. 

 
Figure S1B. Percentage of samples in which the MCFA model reached convergence (left panel), and 

showed one or more negative residual variance estimates (right panel) by the value pre-set to the factor 

loadings generating the sample (colors), and the sample size at level 1 (vertical panels) and 2 (x-axis). 
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Figure 61C. Distribution of fit indices obtained from the multilevel models fitted on the simulated data 

(i.e., considering only those models that reached convergence with no Heywood cases when fitted on 

each combination of loadings and level-1 and level-2 sample sizes). RMSEA = root mean square error of 

approximation; CFI = comparative fit index; SRMR-B = SRMR between subjects; SRMR-W = standardized 

root mean squared residual within subject. 

 

 

3. Power analysis of the configural model m3x3 

Then, we performed a power analysis by defining statistical power as the percentage of 

MCFA models in which all standardized loadings were significantly higher (p < .05) than the 

arbitrary chosen cut-off value of .15, at both levels. We considered a statistical power of 80% 

or above as satisfactory. 

Power plots are shown in Figure S1D. Whereas at level 1 the power was > 80% in all 

cases with N1 ≥ 10 or N2 ≥ 100, only a samples with 500 or more participants would show a 

satisfactory level-2 power when population loadings are close to 0.4. In contrast, a satisfactory 

statistical power was showed by all scenarios in which the population parameters were ≥ 0.6 
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and the sample size at level 2 was ≥ 100. Assuming a population with factor loadings ≥ 0.60 for 

our Italian version of the MDMQ, we concluded that a sample size of 100 or more participants 

with five or more responses each was adequate for evaluating its construct validity. 

 

 

Figure 61D. Percentage of simulated samples from which all estimated factor loadings at level 2 

(between, left panel) and level 1 (within, right panel) were significantly higher (p < .05) than .15, 

depending on the pre-set factor loadings generating the sample (colors), and the sample size at level 1 

(vertical panels) and level 2 (x-axis). 
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