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SUPPLEMENTARY MATERIAL S3.1: Details on MCFA models 

The supplemental material S3.1 includes details on the analytical strategy used for, and 

the results obtained from, the Multilevel Confirmatory Factor Analyses (MCFAs) conducted on 

the Task Demand Scale (TDS), the Task Control Scale (TCS), and the Italian adaptation of the 

Multidimensional Mood Questionnaire (MDMQ).  

 

1. Construct conceptualization and measurement models 

All latent variables were conceptualized as configural cluster constructs (see Stapleton 

et al., 2016). At level 1 (within-individual), Task Demand and Task Control were defined, 

respectively, as the amount of work/difficulty in, and the organizationally mediated possibilities 

to make decisions about, a specific job task. At level 2 (between individuals), Job Demand and 

Job Control were conceptualized as the individual-level aggregates of level-1 constructs, that is 

“the amount or difficulty of one’s work” (i.e., the Workload component of Job Demand; see 

Bowling et al., 2015) and “the organizationally mediated possibilities for workers to make 

decisions about their work” (Karasek et al., 1998).  

Similarly, the MDMQ dimensions Negative Valence, Tense Arousal, and Fatigue (i.e., 

labeled to express negative mood states), were conceptualized as multilevel configural 

constructs whose level-2 (e.g., individual Fatigue levels) components should simply reflect an 

aggregated form of the level-1 (e.g., momentary Fatigue levels within-individual), as proposed 
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by Wilhelm & Schoebi (2007), and supported by following studies conducted with working 

populations (e.g., Dettmers et al., 2016). Coherently, a single-factor configural structure was 

hypothesized for both TDS and TCS items, whereas a three-factor configural structure was 

expected for the MDMQ, as represented in Figure S3.1A. 

 

 

Figure S3.1A. Path diagram of the hypothesized factor models specified for Task Demand (TD), Task Control (TC), 

and Mood. The right side of the figure shows alternative models specified for Mood, in which we varied the 

number of latent factors at both levels. B, between; W, within; NV, Negative Valence; TA, Tense Arousal; F, Fatigue. 

Item wording is shown on the left side (see Supplementary Materials S3 for the exact wording, order, and Italian 

translations). 
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According to the results from Wilhelm & Schoebi (2007), we expected a strong 

correlation between Negative Valence and Tense Arousal at both levels, and especially at level 

2, where the two dimensions could not be distinguished by the factor analysis conducted by 

the authors. In contrast, Dettmers et al. (2016) provided empirical support for a three-factor 

model at both levels, showing a better fit than a one-factor model, and a model assuming three 

factors with an higher-order factor. Consequently, as shown in Figure S3.1A, we compared the 

hypothesized model (m3×3) with three alternative models assuming two factors (i.e., Fatigue, 

and a Tense Arousal factor reflecting both Negative Valence and Tense Arousal item scores, in 

line with Thayer, 1990) either at level 2 (m2×3), at level 1 (m3×2) or both (m2×2). 

 

2.  Analytical strategy 

A separate set of MCFA models was specified for each scale, following the guidelines 

provided by Kim et al. (2016), and using the lavaan R package (version 0.6.6; Rosseel, 2012). 

For each scale, a multilevel model was specified as shown in Figure S3.1A. 

The analytic procedure was based on Hox (2010), according to which we specified a set 

of preliminary models to evaluate the factor structure at both levels. At level 1, a conventional 

one-level CFA was performed on the pooled within-cluster covariance matrix (SPW) (see 

Muthén, 1994). At level 2, benchmark models were specified by imposing: (1) no specification 

(i.e., null model, implying no between-cluster structure at all), (2) only variances but no 

covariances (i.e., independence model, implying between-clusters variance but no 

substantively interesting structural model), and (3) a saturated model (implying that the 

construct only “exists” at the within level, whereas level 2 variation is just “spurious”) (Hox, 

2010). We expected an acceptable fit for the conventional CFA on SPW, whereas a poor fit was 

expected for the three benchmark models specified to evaluate the factor structure at level 2. 
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To validate our conceptualization of Task Demand, Task Control, and Mood as configural 

cluster constructs (Stapleton et al., 2016; Tay et al., 2014), and to evaluate measurement 

invariance across clusters (i.e., participants) (see Jak & Jorgensen, 2017), we tested cross-level 

isomorphism by fitting three increasingly restrictive models on the item scores of each scale, 

following Jak & Jorgensen (2017): (1) a configural invariance model, with the same factor 

structure but different loadings across levels (no constraints were imposed); (2) a weak 

invariance model, with factor loadings constrained to be equal across levels; and (3) a strong 

invariance model, with residual variance at level 2 constrained to zero (assuming both factor 

loadings and intercepts as invariant across clusters). Only models 2 and 3 are compatible with 

configural constructs (Stapleton et al., 2016; Tay et al., 2014). 

The specified multilevel models, all fitted by standardizing the factor covariance matrix 

to avoid fixing the first indicator loadings, were compared by considering both the Bayesian 

Information Criterion (BIC) and the Akaike Information Criterion weight (Aw) (Wagenmakers & 

Farrell, 2004), in addition to the root mean square error of approximation (RMSEA), the 

comparative fit index (CFI) and the standardized root mean squared residual (SRMR). As 

recommended by Hsu et al. (2015), the SRMR was separately computed for the within-

individual (SRMR-W) and the between-participants measurement model (SRMR-B), since global 

fit indices are dominated by the fit information at level 1 (due to higher data numerosity on this 

level), and are likely to be unsensitive to misspecifications at level 2 (see also Ryu & West, 2009). 

According to the criteria proposed by (Hu & Bentler, 1999), we considered RMSEA ≤ .06, CFI ≥ 

.95, and SRMR ≤ .08 as indicative of adequate fit. 
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3. Results 

All TDS, TCS and MDMQ items showed roughly normally distributed scores (see Figure 

S3.1B), with missing responses ranging from 0.00-1.31% (i.e., N = 0-20) for MDMQ and TDS 

items (presented at the beginning of ESM questionnaire) to 2.49-3.14% (i.e., N = 42-48) for TCS 

items (presented at the end of ESM questionnaire)1. Item scores ICCs ranged from .23 to .40, 

suggesting that most variance was at the within level, but level-2 variance was still substantial 

to justify a multilevel approach. Items t2 and t3 measuring Tense Arousal showed the highest 

level-2 variance (ICC = .39 and .40, respectively), whereas items f2 and f3 measuring Fatigue 

showed the highest variance at level 1 (ICC = .23 and .27, respectively).  

 

 
Figure S3.1B. Frequency distribution of ESM item scores. 

 

 
1 Whereas ‘full-missing’ observation (i.e., no response to any of the items) were more likely due to lack of 
participants’ compliance, responses with missing data in one-to-14 items (i.e., N = 48, 3.14%) were caused by 
technical problems with the mobile app used for data collection, to be considered as missing-at-random. 
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Zero-order Pearson correlations between items scores were in the expected directions 

(see Figure S3.1C), with groups of scores associated with the same latent factor being highly 

inter-correlated (Pearson’s r ranging from .47 to .76), and showing lower correlations with 

scores associated with different factors. TDS and TCS scores were more clearly distinguishable 

than Mood dimensions, with some correlations between items scores associated with Negative 

Valence and Tense Arousal being higher than those between scores assumed to reflect the 

same dimension. The latter also showed negative correlations with TCS item scores, and 

positive correlations with TDS scores, whereas Fatigue item scores showed weaker correlations 

with TDS items. Correlations between mean and mean-centered scores were in the same 

directions, but showed, respectively, higher and lower values than those computed from the 

raw scores. 

 

Figure S3.1C. Correlation matrix of raw item scores (on the left, i.e., considering all observations as independent), 

average scores (top-right, i.e., considering one mean value for each participant and item), and mean-centered 

scores (bottom-right, i.e., considering deviations from individual means). v1, v2, v3 = items measuring Hedonic 

Tone; t1, t2, t3 = items measuring Tense Arousal; f1, f2, f3 = items measuring Fatigue; d1, d2, d3, d4 = items 

measuring Task Demand; c1, c2, c3 = items measuring Task Control; SCn = number of reported Situational 

Constraints (not considered in the present work). 
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Preliminary models supported the existence of both within- (the conventional CFA 

specified on the pooled within-participant covariance matrix showed approximately acceptable 

fit, although RMSEA was .071 for Mood) and between-participants factorial structure (all 

benchmark models were rejected).  

Four multilevel models showed improper solutions at level 2 (i.e., a negative variance 

was estimated for item c3 by the configural model of the TCS, and for item t3 measuring Tense 

Arousal in model m2×3, and both the configural and the weak invariance models m3×3). As we 

excluded problems of nonconvergence (all models converged), missing data (< 3.14% for each 

considered item), empirical underidentification (all loadings were > .60 at level 2, with 

correlations between MDMQ dimensions ranging from .58 to .91), and structural 

misspecification (all 95% CI around the negative variance estimates included zero), we imputed 

the improper solutions to sampling fluctuation, and we excluded participants associated with 

the lowest (negative) variance estimates (strategy A: sensitivity analysis). Participants were 

excluded one by one, until a positive variance was estimated. This procedure led to the 

exclusion of four participants (2.88%) to solve the problem in the configural model for TCS 

items, five participants (3.60%) to solve it in the configural and the MDMQ weak invariance 

models m3×3, and seven participants (5.04%) to solve it also in m2×3. As an alternative strategy 

(strategy B: fixed residual variance), we fixed the residual variance of the problematic items to 

the 15% of their total variance. 

The model comparisons obtained for the three ESM scales under different constraints 

and using different subsamples of participants are reported in Tables S3.1A-C. In all 

comparisons, the hyphothesized configural model and the corresponding weak invariance 

model showed acceptable fit indices, with the only exception of the configural model of TCS 

items (RMSEA > .060). Since the configural model of the TCS with freely estimated parameters 
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was saturated, χ2-derived fit indices could not be evaluated. Thus, although the configural 

model showed higher Aw than the weak invariance model, the latter was preferred. Alternative 

models m2×3, m3×2 and m2×2 showed unacceptable fit across the four model comparisons 

for MDMQ scores, and were rejected, with the exception of m3×2 when we fixed the residual 

covariance of item t3 at level 2. Overall, the weak invariance models were selected as the best 

models, showing the lowest RMSEA and BIC in all comparisons, and the highest Aw in all TDS- 

and TCS-related model comparisons.  

 

Table S3.1A. Model comparison and fit indices for the Task Demand Scale. 

 Model n. par. χ2 (df) RMSEA CFI SRMR-W SRMR-B AICw BIC 

 

Weak invariance 16 32.33 (8) .045 .991 .016 .061 .685 18223.89 

Configural 20 25.89 (4) .060 .992 .013 .037 .315 18246.70 

Strong invariance 12 462.55 (12) .158 .829 .062 .218 .000 18624.83 

n. par., number of estimated parameters, df, degrees of freedom associated with the χ2 statistic; RMSEA, root 

mean square error of approximation; CFI, comparative fit index; SRMR-W, root mean squared residual within 

subject; SRMR-B, SRMR between subjects; Aw, Akaike Information Criterion weight; BIC, Bayesian Information 

Criterion; TD, Task Demand; TC, Task Control. Bold types indicate the selected model for each comparison. 

 

Table S3.1B. Model comparisons and fit indices for the Task Control Scale. 

 Model n. par. χ2 (df) RMSEA CFI SRMR-W SRMR-B Aw BIC 

H
ey

w
o

o
d

 Configural (HC)a 15      .863 15353.27 

Weak invariance 12 9.68 (3) .039 .994 .010 .053 .137 15341.05 

Strong invariance 9 443.61 (6) .222 .616 .071 .232 .000 15753.09 

St
ra

te
gy

 A
 Configurala 15      .315 14790.27 

Weak invariance 12 5.38 (3) .023 .998 .008 .035 .685 14773.84 

Strong invariance 9 317.79 (6) .190 .741 .058 .186 .000 15064.44 

St
ra

te
gy

 B
 Configural 14 12.36 (1) .088 .990 .002 .044 .034 15358.33 

Weak invariance 12 9.68 (3) .039 .994 .010 .053 .966 15341.05 

Strong invariance 9 443.61 (6) .222 .616 .071 .232 .000 15753.09 

See the notes in Table S3.1A. HC, Heywood case; a, The model was saturated, and the fit indices could not be 

evaluated. The table shows the model comparison conducted on the full sample (showing HC for item c3 on level 

2 in the Configural model), and by using strategy A (i.e., excluding four participants based on sensitivity analysis: 

N = 135) or B (i.e., constraining the item c3 residual variance at level 2 to the 15% of its total variance at level 2). 



9 
 

Table S3.1C. Model comparison and fit indices for the Multidimensional Mood Questionnaire. 

 Model n. par. χ2 (df) RMSEA CFI SRMR-W SRMR-B Aw BIC 

H
ey

w
o

o
d

 c
as

es
 (

N
 =

 1
3

9
) 

m2×2 47 566.73 (52) .075 .926 .045 .067 .000 44679.56 

m2×3 (HC) 49 474.59 (50) .069 .939 .045 .052 .000 44602.37 

m3×2 49 418.75 (50) .065 .947 .033 .058 .000 44546.53 

m3×3 CI (HC) 51 352.13 (48) .060 .956 .033 .050 .999 44494.87 

m3×3 WI (HC) 42 403.56 (57) .059 .95 .036 .048 .000 44479.01 

m3×3 SI 33 754.19 (66) .077 .901 .044 .089 .000 44762.35 

St
ra

te
gy

 A
 (

N
 =

 1
3

4
) 

m2×2 47 502.81 (52) .071 .933 .044 .053 .000 42513.49 

m3×2 49 355.20 (50) .060 .955 .031 .048 .000 42380.75 

m3×3 CI 51 296.06 (48) .055 .963 .031 .042 .999 42336.49 

m3×3 WI 42 337.52 (57) .054 .959 .034 .039 .001 42311.02 

m3×3 SI 33 603.63 (66) .069 .921 .039 .077 .000 42510.21 

St
ra

te
gy

 A
 (

N
 =

 1
3

2
) 

m2×2 47 484.63 (52) .071 .935 .043 .052 .000 41750.22 

m2×3 49 408.37 (50) .066 .946 .043 .043 .000 41688.80 

m3×2 49 348.00 (50) .060 .955 .031 .047 .000 41628.43 

m3×3 CI 51 294.29 (48) .055 .963 .030 .042 .999 41589.56 

m3×3 WI 42 334.91 (57) .054 .958 .033 .039 .001 41563.40 

m3×3 SI 33 600.99 (66) .070 .920 .039 .076 .000 41762.70 

St
ra

te
gy

 B
 (

N
 =

 1
3

9
) 

m2×2 47 566.73 (52) .075 .926 .045 .067 .000 44679.56 

m2×3 49 367.26 (50) .060 .954 .033 .045 .100 44495.05 

m3×2 49 418.75 (50) .065 .947 .033 .058 .000 44546.53 

m3×3 51 359.09 (48) .061 .955 .033 .044 .890 44501.82 

m3×3 WI 42 398.47 (57) .058 .951 .035 .046 .001 44473.92 

m3×3 SI 33 754.19 (66) .077 .901 .044 .089 .000 44762.35 

See the notes in Table S3.1A. CI, Configural invariance; WI, Weak invariance; SI, Strong invariance; HC, Heywood 

case. The table shows the model comparison conducted on the full sample (showing HC for item t3 on level 2 in 

m2×3, and the m3×3 CI and WI models), and by using either strategy A (i.e., sensitivity analysis) to solve the 

problem in models m3×3 (by excluding five participants, as reported in the main manuscript) and in all models (by 

excluding seven participants) or Strategy B (i.e., constraining the item t3 residual variance at level 2 to the 15% of 

its total variance at level 2). 

 

In contrast, the model assuming strong factor invariance was rejected due to 

unsatisfactory fit across all model comparisons. 
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Figure S3.1D shows the unstandardized and the completely standardized solution for 

each scale. Standardized loadings estimated with weak configural models were all significant 

and ranged from .58 to .99, with estimated correlations between MDMQ dimensions ranging 

from .46 to .91.  

 

4. Short discussion 

The weak invariance model was selected based on satisfactory and overall better fit for 

all ESM scales, providing initial support to their ability of reflecting multilevel configural cluster 

constructs (Stapleton et al., 2016). This result also implies that weak measurement invariance 

holds across clusters (i.e., respondents), although strong invariance models were rejected, 

suggesting the presence of other factors than the hypothesized dimensions influencing item 

scores at level 2 (Jak & Jorgensen, 2017). Standardized loadings indicated stronger factor 

structure at level 2 than at level 1, a typical situation due to measurement error accumulating 

at the lower level (Hox, 2010). Coherently, reliability coefficients were higher for level 2, but 

adequate at both levels (see the main manuscript). 
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Unstandardized solution 

 
Completely standardized solution 

 
Figure S3.1D. Unstandardized and completely standardized parameter estimates at the between (B) and within 

(W) level from the selected two-level models with weak cross-level invariance. In the unstandardized solution, the 

first loading of each latent variable is fixed to 1 to freely estimate variances and covariances, whereas in the 

completely standardized solution latent variables are standardized to freely estimate all factor loadings, showing 

the correlations between MDMQ subfactors. TD, Task Demand; TC; Task Control; NV, Negative Valence; TA, Tense 

Arousal; F, Fatigue; *, MDMQ items that were reversed prior to analyze the data. 

  



12 
 

5. References 

Bowling, N. A., Alarcon, G. M., Bragg, C. B., & Hartman, M. J. (2015). A meta-analytic 

examination of the potential correlates and consequences of workload. Work and Stress, 

29(2), 95–113. https://doi.org/10.1080/02678373.2015.1033037 

Dettmers, J., Vahle-Hinz, T., Bamberg, E., Friedrich, N., & Keller, M. (2016). Extended work 

availability and its relation with start-of-day mood and cortisol. Journal of Occupational 

Health Psychology, 21(1), 105–118. https://doi.org/10.1037/a0039602 

Hox, J. J. (2010). Multilevel Analysis: Techniques and Applications (2nd ed.). Routledge. 

Hsu, H. Y., Kwok, O. man, Lin, J. H., & Acosta, S. (2015). Detecting Misspecified Multilevel 

Structural Equation Models with Common Fit Indices: A Monte Carlo Study. Multivariate 

Behavioral Research, 50(2), 197–215. https://doi.org/10.1080/00273171.2014.977429 

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. 

https://doi.org/10.1080/10705519909540118 

Jak, S., & Jorgensen, T. D. (2017). Relating Measurement Invariance, Cross-Level Invariance, 

and Multilevel Reliability. Frontiers in Psychology, 8(OCT), 1–9. 

https://doi.org/10.3389/fpsyg.2017.01640 

Karasek, R., Brisson, C., Kawakami, N., Houtman, I., Bongers, P., & Amick, B. (1998). The Job 

Content Questionnaire (JCQ): An instrument for internationally comparative assessments 

of psychosocial job characteristics. Journal of Occupational Health Psychology, 3(4), 322–

355. https://doi.org/10.1037/1076-8998.3.4.322 

Kim, E. S., Dedrick, R. F., Cao, C., & Ferron, J. M. (2016). Multilevel Factor Analysis: Reporting 

Guidelines and a Review of Reporting Practices. Multivariate Behavioral Research, 51(6), 

0–0. https://doi.org/10.1080/00273171.2016.1228042 

Muthén, B. O. (1994). Multilevel Covariance Structure Analysis. Sociological Methods & 

Research, 22(3), 376–398. https://doi.org/10.1177/0049124194022003006 

Rosseel, Y. (2012). lavaan : An R Package for Structural Equation Modeling. Journal of 



13 
 

Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02 

Ryu, E., & West, S. G. (2009). Level-Specific Evaluation of Model Fit in Multilevel Structural 

Equation Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 16(4), 

583–601. https://doi.org/10.1080/10705510903203466 

Stapleton, L. M., Yang, J. S., & Hancock, G. R. (2016). Construct Meaning in Multilevel Settings. 

Journal of Educational and Behavioral Statistics, 41(5), 481–520. 

https://doi.org/10.3102/1076998616646200 

Tay, L., Woo, S. E., & Vermunt, J. K. (2014). A Conceptual and Methodological Framework for 

Psychometric Isomorphism. Organizational Research Methods, 17(1), 77–106. 

https://doi.org/10.1177/1094428113517008 

Thayer, R. E. (1990). The Biopsychology of Mood and Arousal. Oxford University Press. 

Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. 

Psychonomic Bulletin & Review, 11(1), 192–196. https://doi.org/10.3758/BF03206482 

Wilhelm, P., & Schoebi, D. (2007). Assessing mood in daily life: Structural validity, sensitivity to 

change, and reliability of a short-scale to measure three basic dimensions of mood. 

European Journal of Psychological Assessment, 23(4), 258–267. 

https://doi.org/10.1027/1015-5759.23.4.258 

 


